
Monte Carlo simulations of continuum percolation of 3D well fluids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 2241

(http://iopscience.iop.org/0953-8984/2/9/013)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/9
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 2241-2249. Printed in the UK 
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Abstract. We investigate the percolation threshold, pp, of three-dimensional continuum 
attractive and repulsive square-well, triangular-well and parabolic-well fluids by Monte 
Carlo computer simulation. We find that in the hard-core limit an attractive well decreases 
pp below the high-temperature limiting value. In contrast a hard shoulder potential 
produces the opposite trend. We quantify the role of the range and shape of the well 
potential in determining the value of the percolation threshold. We examine the shapes of 
all the clusters at the percolation threshold, resolved as a function of the number of particles 
in a cluster, s. The asphericity parameter, A3, describing the instantaneous shape of the 
cluster, decays slowly from unity, achieving = 0.3 by s U 70, statistically indistinguishable 
from the estimated universal value of 0.312 for percolation clusters. 

1. Introduction 

The concept of percolation, i.e., the formation of an infinitely ranged pathway through 
space, has found many applications in chemical physics. For example, it provides a 
starting point for modelling the physical properties of colloidal dispersions as they 
aggregate or undergo a sol/gel transition. We continue our exploration of the effect 
of the form and range of the molecular pair potential on the value of the percolation 
threshold for continuum fluids. We consider the generic hard-core ‘well’ molecules. 
These model molecules interact here via a square-, triangular- or parabolic-well pair 
potential where the potential minimum or shoulder has a strength of N k,T. The 
motivation for this study lies ultimately in understanding colloid particle stabilisation 
applied by a surface coating. A wide variety of coatings can be idealised by these 
potential forms. Polymer stabilised colloids would be close to a hard-sphere potential 
with a thin repulsive shoulder, of an analytic form depending on the chemistry of the 
adsorbate. Similarly surface charged colloids can have a thin attractive layer around 
the hard repulsive core. We are interested in how the nature of the coating will affect 
the long-range order of the particles. We have idealised these into three well types, 
illustrated in figure 1, to cover a range of degrees of interpenetration between the 
‘adsorbed’ layers. Interest to date in applying percolation concepts to study colloids 
and microemulsions has been dominated by the calculation of the scaling exponents. 
In this work we concentrate rather on the value of the percolation threshold. 

Despite there being a long-standing interest in analytic treatments of continuum 
percolation and the ‘pair connectedness’ (Hill 1955, Coniglio et a1 1977) it is only in the 
last few years that simulation has been used to focus attention on quantifiable results 
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Figure 1. The potentials used in the simulations. 
Key: SW, equation (7); TW, equation (8); PW, equation 
(9). We show the q ( r )  for the attractive wells with 
E. = 2. The repulsive well or shoulder potentials are 
obtained by inverting the cp(r) for U < r < l o  about 

s w  

b; 
2 

’ - 4  

r / o  the abscissa. 

for specific pair potentials. There has already been considerable interest in continuum 
percolation of spherical particles by MC. Randomly centred spheres, where there is no 
hindrance to overlap, have been considered (Balberg 1988). Partially penetrable hard 
core spheres, (Lee and Torquato 1988) and attractive square wells (Chiew and Wang 
1988) have also been investigated. As with previous studies we limit our interest to the 
case where the connectivity distance, os, equals the range of the potential up to where 
q ( r )  = 0. By carrying out an N-dependence study, Metropolis Monte Carlo computer 
simulation is shown here to give an accurate value for the percolation threshold, pp to 
within several per cent, using only several hundred particles in the simulation cell. (The 
percolation exponents themselves are difficult to obtain accurately with these system 
sizes to better than k0.05.) We are particularly interested in discovering the effect of an 
attractive and repulsive shoulder to the hard-core centre. In previous reports (Heyes 
and Melrose 1988, 1989a), the percolation cluster statistics of the 3D Lennard-Jones 
(LJ) fluid were described. We have also investigated the corresponding 2D fluid ,by 
MD (Cooper et a1 1989) and the 2D square-well, SW, fluid by MC (Heyes and Melrose 
1989b). 

2. Monte Carlo simulations 

Our method of determining clusters is identical to that used previously (Heyes and 
Melrose 1988). We consider partially permeable spheres (or ‘soft shells’) of diameter os 
centred on those of the hard cores. Particles are connected if their soft shells overlap. 
Percolation occurs when a connected cluster spans the infinite replica system. As cs 
diminishes, (i.e., the so-called soft-core-hard-core transition) the repulsive core and 
attractive outer zone of the particle influences the nature of the clusters formed out of 
the soft shells and thereby affects the percolation characteristics. The next step forward 
of these continuum percolation studies is that we explore the interplay between the 
underlying phase behaviour of these fluids and the long-range order. 

We evaluated the function, P ,  the fraction of configurations generated by the com- 
puter that manifested at least one percolating cluster (PC). The percolation threshold in 
the thermodynamic limit (i.e., N --f CO), pp, is best estimated for finite N when P = 0.5, 
because it shows the smallest system-size (i.e., N)  dependence. 

The distribution of different sized clusters is characterised by the cluster number 
distribution function, n,, which for these continuum (‘off-lattice’) systems is the time- 
average number of clusters containing s particles, N, divided by N i.e., n, = N,/N 
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(Balberg and Binenbaum 1985). At the percolation threshold 

n&,) - s-T s -+ 00. ( 1 )  

For finite periodic systems there is an upper bound on s, i.e., 1 I s 5 N ,  resulting in 
distortions from ( 1 )  for s -+ N .  

At the percolation threshold, the radius of gyration, R,, provides a route to the 
fractal dimension, D, of the non-percolating clusters. 

s-1 s 

R , = ( k x x R ; / s ( s - l )  i j#i  

where Rij is the vector separation between particles i and j. The scaling relationship 
here is R, - s1IDf as s -+ CO. 

The pair radial distribution function, g ( r )  and pair connectedness function, p ( r ) ,  for 
pair separations, r ,  are probes of the local structure in the whole fluid and within the 
clusters, respectively 

where S r  is the radial increment for n ( r ) ;  n(r) is the number of particles found on 
average within r - S r / 2  I r I r + 6 r / 2 .  

If P, is the fraction of molecules in the percolating cluster, PC, then at pp 

where n(r)' is the number of particles found on average within r - 6 r / 2  I r I r + 6 r / 2  
within the same cluster. (All clusters are used for this, not just the PC) As r -+ 00 then 
p ( r )  -+ P i .  Therefore, the p ( r )  looks similar to g ( r )  at short range but attains a lower 
limiting value when the pair separation becomes comparable 
cell. In the limit r -+ CO, p ( r )  - rDf-3. In practice, we found 
accurately from the function 

m(r)  = Lr n(r')  dr' 

to the size of the periodic 
that D, is obtained more 

which has the limiting value rDf for large r .  
A new feature of this work is the determination of the shape of the clusters (Bishop 

and Clarke 1989). We measure the instantaneous shape of the clusters, as a function of 
s. The shape of the cluster is determined from its tensor components of the radius of 
gyration. The trace of this is equal to Ri and the eigenvalues, Ai,  are the components 
of Ri  along the principal orthogonal axes. In dimension, d,  the asphericity, Ad,  of the 
cluster is measured by [24] 

If the cluster is highly symmetric, roughly spherical, then A ,  -+ 0, whereas if it is 
rod-shaped, then A,  = 1. 
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3. Simulation details 

The MC calculations were performed on cubic unit cells of volume V containing 
N = 256 and N = 500 hard-core particles. The Metropolis MC technique was used for 
particles interacting via the following pair potentials : 

(i) square well: 

(ii) triangular well: 

(iii) parabolic well: 

For brevity we denote these the SW, TW and PW pair-potentials respectively. The 
hard-core diameter of the particles is a. For attractive wells, E = 1, and for repulsive 
‘well’ or shoulder particles, E = -1. We use 

It is not necessary for the ‘capture’ radius and potential range to coincide. The cases 
where a, # ;la could be studied also. The simulations were for - 8000 attempted moves 
per particle for N = 256 and for N 4000 attempted moves per particle for N = 500. 
The maximum displacement distance per particle was periodically adjusted during the 
simulation in order achieve a move acceptance fraction of 0.5. We employ the following 
reduced units throughout, i.e., k g T / c  + T ,  and number density, p = N a 3 / V .  

4. Results and discussion 

In table 1 we present a summary of the values for pp attained by the MC simulations 
for the attractive well potentials. In figure 2 the boundary lines between percolating 
and non-percolating states for a selection of as are given. A range of a, is considered, 
which spans essentially the whole of the phase diagrams for these three fluids. In 
the hard-core limit (e.g., a, 6 lS),  the value of pp decreases with fall in temperature 
from T = 10 + 0.5, the range considered here. The effect is most pronounced in the 
ascending order, PW, TW and sw. The pp manifest a curvature to lower density as T 
decreases. The a, 2 2.0 lines increasingly show a pp that shift towards higher density 
as temperature decreases. The effect is pronounced at a, = 3.0 for example. This 
behaviour is also obtained in 2D (Bug et al 1985). The N dependence of these pp, as 
given in table 1, is only a few per cent for T N 10. 
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Table 1. The percolation thresholds of the triangular-well (TW) and parabolic-well (PW) 
potential fluids. The simulation parameters and properties. Key: T ,  reduced temperature; 
N ,  number of molecules in the MC cell; pp, percolation threshold reduced number density; 
4 / N k ~  T ,  average potential energy per particle divided by thermal energy; g ( o + ) ,  value of 
g ( r )  at r = U + 6, 6 > O,+ 0. Similarly, g ( o i - )  is g ( r )  at r = l o  - 6 and g ( a ; + )  is g ( r )  at 
r = l o  + 6. P / p e  T ,  usual compressibility factor. 

T N 

10.0 
2.0 
1 .o 
0.75 
0.5 

10.0 
2.0 
1 .o 
0.5 

10.0 
2.0 
0.75 
0.5 

10.0 
2.0 
0.75 
0.5 

10.0 
2.0 
0.75 
0.5 

14.0 
10.0 
2.0 
0.75 
0.5 

10.0 
4.0 
0.75 
0.5 

10.0 
4.0 
0.75 
0.5 

10.0 
4.0 
0.75 
0.5 
0.3 

10.0 
4.0 
0.75 

10.0 
4.0 
0.75 

0.50 

500 
500 
500 
500 
500 

500 
500 
500 
500 
256 
256 
256 
256 

500 
500 
500 
500 

500 
500 
500 
500 

500 
500 
500 
500 
500 

500 
500 
500 
500 

500 
500 
500 
500 

256 
256 
256 
256 
256 

500 
500 
500 

500 
500 
500 
500 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 

TW 
TW 

TW 

TW 

TW 

TW 

PW 

PW 

PW 

PW 

PW 

PW 

PW 
PW 

PW 

PW 
PW 

PW 
PW 

PW 

PW 

PW 

PW 
PW 

PW 

PW 
PW 

PW 
PW 
PW 

PW 

1.1 
1.1 
1.1 
1.1 
1.1 

1.2 
1.2 
1.2 
1.2 

1.5 
1.5 
1.5 
1.5 

1.5 
1.5 
1.5 
1.5 

3.0 
3.0 
3.0 
3.0 

1.05 
1.05 
1.05 
1.05 
1.05 

1.1 
1.1 
1.1 
1.1 

1.2 
1.2 
1.2 
1.2 

1.5 
1.5 
1.5 
1.5 
1.5 

3.0 
3.0 
3.0 

3.0 
3.0 
3.0 
3.0 

0.564 
0.531 
0.489 
0.462 
0.395 

0.381 
0.359 
0.333 
0.266 

0.178 
0.171 
0.147 
0.123 

0.177 
0.174 
0.150 
0.131 

0.02 18 
0.0236 
0.0752 
0.0943 

0.753 
0.750 
0.728 
0.678 
0.638 

0.561 
0.549 
0.468 
0.393 

0.385 
0.377 
0.342 
0.312 

0.180 
0.177 
0.166 
0.150 
0.142 

0.022 
0.022 
0.085 

0.025 
0.024 
0.026 
0.046 

-0.033 
-0.197 
-0.492 
-0.61 1 
-0.515 

-0.039 
-0.23 1 
-0.51 1 
-0.98 1 

-0.046 
-0.256 
-0.9 1 6 
-2.726 

-0.045 
-0.262 
-0.964 
-2.284 

-0.042 
-0.262 

-10.06 
-19.85 

-0.010 
-0.02 1 
-0.154 
-0.535 
-0.972 

-0.03 1 
-0.083 
-0.746 
-1.297 

-0.027 
-0.05 1 
-0.522 
-1.069 

-0.025 
-0.076 
-0.619 
-1.290 
-5.525 

-0.043 
-0.118 

-0.005 
-0.066 
-0.928 
-7.086 

-11.90 

2.61 
3.30 
4.3 1 
5.39 
8.53 

1.83 
2.42 
3.23 
6.52 

1.44 
1.73 
3.56 

10.93 

1.35 
1.84 
1.93 

10.46 

1.04 
1.38 

33.31 
57.35 

3.83 
3.77 
5.04 
8.39 

12.53 

2.57 
2.79 
5.53 
8.81 

1.88 
2.11 
4.69 
7.51 

1.37 
1.56 
3.62 
7.34 

1.18 
1.41 

37.74 

0.59 
1.35 
6.13 

42.95 

27.7 

1.81 
1.60 
1.42 
1.26 
1.08 

1.30 
1.19 
1.07 
0.87 

1.02 
0.97 
0.91 
1.31 

1.03 
0.96 
0.94 
1.23 

0.96 
0.96 
2.17 
2.21 

2.80 
2.78 
2.56 
1.97 
1.62 

1.82 
1.75 
1.27 
1.10 

1.34 
1.30 
1.08 
0.94 

1.01 
1 .00 
0.90 
0.95 
0.95 

0.98 
0.98 
2.44 

0.96 
1.02 
1.06 
1.73 

1.80 
1.59 
1.39 
1.28 
1.11 

1.31 
1.20 
1.06 
0.87 

1.04 
0.94 
0.89 
1.24 

1.03 
0.96 
0.94 
1.23 

0.97 
0.95 
2.12 
2.17 

2.71 
2.74 
2.50 
2.12 
1.73 

1.81 
1.74 
1.27 
1.14 

1.31 
1.31 
1.07 
0.99 

1.04 
1.01 
0.93 
0.95 
0.98 

0.98 
0.98 
2.43 

0.97 
1 .00 
1.09 
1.73 

2.01 
3.18 
2.38 
2.00 
1.32 

2.30 
1.97 
1.48 
0.69 

1.45 
1.18 
0.74 
0.30 

1.42 
1.20 
0.66 
0.12 

1 .00 
0.80 

-1.25 
-2.71 

6.63 
6.36 
5.63 
3.23 
0.72 

3.72 
3.46 
2.10 
1.36 

2.36 
2.25 
1.58 
1.03 

1.44 
1.39 
0.92 
0.61 

-0.48 

1.01 
0.94 

-1.43 

1.01 
0.99 
0.50 

-0.54 
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Figure 2. The percolation thresholds for the 3D sw, 
TW and PW fluids. The full curves denote bound- 
aries between non-percolating states (to the left) and 
percolating states (to the right) of the line based on 
the MC computations. Key: sw, cl; TW, A ;  PW, 0. 
Distance is in hard-core 6. Each line corresponds to 
and is annotated at the top of the figure with the 
relevant search diameter us = 1 in hard-core units or 
u units. 

Figure 3. As for figure 2, except that the corre- 
sponding curves for the repulsive shoulder fluids are 
given. 

We now consider the inverted well or ‘shoulder’ potential fluids. In table 2 we 
present a summary of the values for pp attained by the MC simulations for the shoulder 
potentials. In figure 3 we show some representative percolation threshold curves for 
these fluids. As temperature drops the pp increase at all A-values, revealed in table 
2 and figure 3 for selected A. The effect is most pronounced in the ascending order 
PW, TW, SW. As there is no liquid-gas coexistence region produced by these repulsive 
potentials, we do not observe any anomalous trends in pp as we vary os or equivalently 
A a t T - 1 .  

The difference in behaviour between square wells and square shoulder potentials is 
understood as follows. As temperature decreases the attractive square wells cause the 
network in the hard-core limit to become more ‘fibrous’ in appearance. Neighbours are 
attracted within the well range in order to reduce the energy of the system. Therefore a 
lower density of particles is required to induce percolation. (The soft-core limit proves 
to be an exception to this rule, as explained previously (Bug et a1 1985).) The PW and 
TW have a smaller effective potential range than the sw particles with the same nominal 
well range, evident in figure 1. Therefore these particles exhibit a less extreme curvature 
of pp in this temperature region. The reverse occurs for the ‘shoulder’ potentials. The 
decrease in temperature causes particles to depart from the region of radius A about 
each particle. As the local connectivity is reduced, a higher density is required to induce 
percolation. 
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Table 2. As for table 1 ,  except that the triangular and parabolic repulsive shoulder potential 
fluids are considered. 

T N 

10.0 
1 .o 
0.75 
0.5 

10.0 
2.0 
0.75 
0.5 

10.0 
2.0 
0.75 
0.5 

12.0 
10.0 
4.0 
1 .o 
0.75 
0.50 

10.0 
2.0 
0.75 

10.0 
2.0 
0.75 
0.5 

10.0 
4.0 
2.0 
1 .o 
0.75 
0.5 
9.0 
4.0 
1 .o 
0.50 

500 
500 
500 
500 
500 
500 
500 
500 
256 
256 
256 
256 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 

256 
256 
256 
256 
256 
256 
500 
500 
500 
500 

TW 

TW 

TW 
TW 

TW 

TW 
TW 

TW 

TW 
TW 

TW 

TW 

PW 

PW 

PW 

PW 

PW 

PW 

PW 
PW 

PW 

PW 
PW 

PW 
PW 

PW 

PW 
PW 

PW 

PW 
PW 

PW 

PW 

PW 
PW 

1.1 
1.1 
1.1 
1 .1  

1.2 
1.2 
1.2 
1.2 
1.5 
1.5 
1.5 
1.5 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.1 
1.1 
1.1 
1.2 
1.2 
1.2 
1.2 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
3.0 
3.0 
3.0 
3.0 

0.575 
0.63 1 
0.650 
0.688 
0.389 
0.409 
0.445 
0.466 

0.183 
0.188 
0.202 
0.213 
0.758 
0.764 
0.770 
0.806 
0.815 
0.840 
0.562 
0.601 
0.649 
0.382 
0.399 
0.418 
0.434 
0.182 
0.183 
0.185 
0.185 
0.194 
0.196 
0.024 
0.024 
0.022 
0.023 

0.052 
0.451 
0.496 
0.661 
0.050 
0.223 
0.51 1 
0.628 

0.047 
0.217 
0.458 
0.614 
0.061 
0.066 
0.070 
0.231 
0.264 
0.336 
0.050 
0.244 
0.486 
0.034 
0.151 
0.302 
0.400 
0.029 
0.072 
0.130 
0.231 
0.281 
0.347 
0.026 
0.058 
0.161 
0.253 

2.28 
1.34 
1.10 
0.74 
1.65 
1.26 
0.8 1 
0.51 
1.16 
0.94 
0.55 
0.39 
3.18 
3.05 
3.01 
1.74 
1.31 
0.69 
2.24 
1.78 
1.07 
1.63 
1.21 
0.62 
0.38 
1.21 
1.09 
0.87 
0.62 
0.44 
0.29 
1.03 
0.79 
0.37 
0.16 

1.91 
2.43 
2.64 
3.14 
1.38 
1.51 
1.81 
2.06 

1.06 
1.14 
1.31 
1.42 
2.85 
2.90 
2.97 
3.53 
3.73 
4.17 
1.88 
2.13 
2.59 
1.36 
1.45 
1.63 
1.77 

1 .04 
1.07 
1.10 
1.14 
1.19 
1.22 
1.02 
1 .00 
1.02 
1.06 

1.90 
2.46 
2.65 
3.11 
1.37 
1.51 
1.82 
2.08 
1.07 
1.13 
1.28 
1.44 
2.86 
2.87 
2.93 
3.37 
3.60 
3.96 
1.88 
2.13 
2.64 
1.36 
1.44 
1.61 
1.76 

1.04 
1.06 
1.10 
1.13 
1.19 
1.24 
1.03 
1.01 
1.05 
1.08 

4.04 
5.62 
6.30 
7.82 
2.51 
2.89 
3.90 
4.61 

1.53 
1.79 
2.30 
2.76 
6.50 
6.41 
7.18 
8.64 
9.14 

10.24 
3.92 
4.68 
6.23 
2.45 
2.74 
3.22 
3.65 
1.53 
1.59 
1.67 
1.84 
1.95 
2.18 
1.08 
1.11 
1.24 
1.42 

In figure 4 we show the asymmetry parameter, A, ,  for representative TW and Pw 
state points at the percolation threshold. We note that for the non-percolating clusters 
A ,  decreases from 1 at s = 2 to A ,  2: 0.5 at  s = 5. The overall trend, above the 
statistical fluctuations, reveals that the subsequent decrease is slow, i.e., A ,  N 0.3 for 
s - 70, statistically the same as the interdimensional expansion prediction of A ,  = 0.312 
for percolation clusters (Rudnick and Gaspari 1981). We expect that the A ,  of these 
large s clusters in the plateau region of figure 4 to be the same as the percolating 
cluster. 

The cluster number distribution function, n,(s), has the exponent z = 2.2 on a 3D 
lattice (Stauffer 1985). We find that in the fluid phase the measured exponent z’  is 
slightly less than this value: t’ = 2.1 & 0.1. (We use the notation 5’ rather than z 
here because z is defined as the exponent of n, in the asymptotic limit of N + 03.) 
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1 0  

0.8 

0.6 

A3 
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0 2  

' l o r -  1 

I I 
o a l  

' Figure 4. The asphericity parameter, A3, from (6) for 
state points p = 0.1849, T = 4, 1 = 1.5, N = 256, 

N = 500, repulsive PW. 

6o 0 20 LO 
5 repulsive TW. Inset: p = 0.6323, T = 1, I = 1.1,  

We expect that for much larger systems (at present beyond the scope of molecular 
simulation) the evaluated z' will increase to the universal value, that is z' -+ z. 

The non-percolating and percolating clusters formed from non-interacting particles 
on a lattice at pp manifest the same fractal dimension, D,. For non-interacting particles, 
percolation theory gives D, = d - b/v, where d is the dimension of the space (= 3 
here) and /I and v are the universal percolation exponents. In 3D, p = 0.4 and v = 0.9 
(Stauffer 1985), D, = 2.5. The extracted D, of the percolating cluster from ( 5 )  gives 
D, = 2.7 0.1, which again shows some deviation from the universal value, attributed 
to the small periodic systems considered here. 

5. Conclusions 

We have mapped out the percolation threshold curves of attractive well and repulsive 
shoulder potentials of three shapes. We have shown that the percolation threshold of 
these two classes of potential move in the opposite direction as a result of a temperature 
change. The attractive square-well potential fluids percolate at a lower density (in the 
hard-core limit) than the triangular-well or parabolic-well potential fluids. The opposite 
trend is observed in the soft-core limit. 

The square-shoulder potential fluids percolate at a higher density (in the hard- 
core limit) than the triangular well or parabolic well potential fluids. As there is no 
liquid-vapour coexistence in any of the shoulder fluids, the percolation curves are more 
featureless than the equivalent well curves. We have also investigated the shapes of 
the clusters and found that, with no noticeable sensitivity to the connectivity distance, 
os, or to the form of the potential, there is a slow loss of asphericity with increasing 
number of particles in the cluster. After a sharp reduction in asphericity for clusters 
up to about 10 particles in size, the subsequent approach to an asymptotic universal 
shape would appear to require N 70 particles. 

In this work we have investigated the dependence of the percolation threshold on 
'generic' pair potentials. In future work it would be of interest to relate the percolation 
properties of specijic experimental colloidal systems with realistic interaction potentials. 
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